南水北调:2023年着力推进后续工程规划建设******
新华社北京1月12日电(记者刘诗平)中国南水北调集团有限公司董事长蒋旭光12日表示,2023年是加快推进南水北调后续工程高质量发展、加快构建国家水网的关键之年,南水北调集团将立足“调水供水行业龙头企业、国家水网建设领军企业、水安全保障骨干企业”战略定位,加快推进南水北调后续工程规划建设和国家水网构建,加快建设世界一流企业。
蒋旭光在南水北调集团2023年工作会议上说,2023年南水北调集团将着力推进南水北调后续工程规划建设,加快畅通国家水网大动脉,完善“四横三纵”规划布局。围绕工程布局、实施安排、建设运营体制、水价和投融资机制、数字孪生等,深度参与南水北调工程总体规划修编;高标准、高质量建设引江补汉工程,统筹推进初步设计报批、关键技术攻关、临时工程先期建设、主体工程招标等相关工作,加快工程建设进程,推进施工建设尽快进入高峰。
同时,积极推进东、中线其他后续工程规划建设,加快东线二期可研报告修改完善,着力推进中线防洪安全保障工程建设,依法合规推进中线沿线调蓄工程论证实施,积极推进中线总干渠挖潜扩能前期工作;加快推进西线工程前期工作,争取早日立项,为尽快建设实施创造条件。
蒋旭光表示,2023年南水北调集团将着力加快推进国家水网构建。主动承担国家骨干水网建设任务,积极参与骨干输排水通道建设,谋划构建华北水网,参与开发建设战略水源地等一批国家水网重点工程项目。持续延展区域水网,推进国家骨干水网工程与区域水网工程互联互通,提升水网覆盖范围和服务能力。推进水网开发模式创新,深化与有关地方和单位战略合作,通过“调水+”协同开发周边及密切关联项目和产业,提升综合效益。
此外,2023年南水北调集团将更加着力强化各类风险防控,持续做好年度调水工作,充分发挥综合效益。突出抓好已建工程防汛和冰期输水工作,加快推进重大问题科技攻关,加快数字孪生南水北调建设。
2022年,南水北调后续工程加快实施,引江补汉工程快速实现开工建设,东、中线一期工程运行安全平稳、调水任务超额完成。统计显示,2022年度南水北调中线调水92.12亿立方米,为年度计划的127%;东线北延工程向黄河以北补水1.89亿立方米,为年度计划的215%,助力京杭大运河实现了百年来首次全线水流贯通。
时空穿越不再是梦?科学家成功模拟“全息虫洞”!******
近日,科学家打造出
“全息虫洞”的消息冲上热搜
引发了大家的讨论
虫洞是什么?
我们真的能用它穿越时空吗?
今天一起了解虫洞
01虫洞?是虫子住的洞吗?
宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。
电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦!
图源:截图 电影星际穿越中的画面
要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。
一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。
图源:中科院理论物理研究所 虫洞示意图
1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。
这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。
02量子虫洞又是啥?
虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。
日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。
如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。
那么,研究量子虫洞有什么用呢?
这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。
具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。
物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。
03量子虫洞是怎么创造出来的?
2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。
现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。
这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。
在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。
图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞
尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。
END
资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位
整理:董小娴
(文图:赵筱尘 巫邓炎)